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ABSTRACT 
 
 
Machine learning projects were conceived in March 2009 as part of the International Scientific Studies Project 
initiative at the Provisional Technical Secretariat of the Comprehensive Nuclear-Test-Ban Treaty Organization 
(CTBTO) and initiated a few months later. Some of the projects are intended to aim at short to medium term 
operational applications. These include the identification of seismic and hydroacoustic phase names using a large 
number of features extracted from the waveforms, and the labeling of automatic events as real or false depending 
again on a large number of features from the automatic events. Concrete research results using International Data 
Centre (IDC) data are available for these two sets of projects. Seismic phase identification is shown to have the 
potential to improve its accuracy by 23 %, and the software developed for the project on false events identification 
has been tested at the IDC and shown to correctly label 80% of the false alarms. Some projects are aimed at the 
longer term. This is the case of a Bayesian approach to the automatic seismic network processing problem and a 
distributed database approach to the waveform cross-correlation problem. The first project is well under way and has 
surpassed the current operational system by 14 % in accuracy for the same false alarm rate. The second has shown 
the potential of distributed systems to solve efficiency issues.     
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OBJECTIVES 

 
 
The objective of this project is to investigate the application of Machine Learning techniques to the processing of 
waveform data at the IDC of the CTBTO. The initial motivation was that a large database of waveform and 
parametric data has been accumulated in the last ten years and this database is currently hardly exploited in terms of 
its potential to improve on existing models and processing techniques. Analyst knowledge has been captured in the 
archive but is not used in the current automatic system which tends to treat an incoming event as if it is seeing it for 
the first time without the benefit of recalling information pertaining to events in similar locations that have 
previously been recorded. In addition, methods that were too computationally intensive just a few years ago could 
now be used on a real-time basis and inserted into the IDC processing pipeline. 
 
The ISS09 project initiated by the CTBTO in 2008 included a Data Mining/Machine Learning component, which 
was a new area of investigation for the organization. A workshop in March 2009, in preparation for the June 2009 
conference, identified a number of objectives that could be fulfilled in the near term with a high probability of 
success and others that would take a longer effort to bear fruit in the operational system. 
 

 The projects with operational short term goals included: 
• False Events Identification (FEI) using Support Vector Machine (SVM) methods (Mackey et al., 

2009) 
• Hydroacoustic and Seismic phase identification (Tuma M. and Igel C., 2009; Schneider et al., 

2010) 
 

 The projects with operational long term goals included: 
• Vertically Integrated Seismic Analysis (VISA) detection, association, and location (Arora et al., 

2009a, 2009b) 
• Distributed database approach to the waveform cross-correlation problem  

 
Figure 1 shows the areas of impact of four of these projects within the context of the IDC waveform processing.  
 
RESEARCH ACCOMPLISHED 

The various short-term and long-term projects tackled in the Machine Learning area during the last year have led to 
a number of publications illustrating the benefits that can be obtained from applying concepts in that field to the 
problem of processing of seismic and hydroacoustic data at the IDC.  

False Events Identification 

The first short-term project which was tackled was the false event identification (FEI) in the SEL3 bulletin based on 
features of the detections and associations that comprise each hypothesized event. The problem was formulated as a 
classification problem of labeling SEL3 events as either true or false based on a large set of features.  Several 
variants of the SVM methods as well as the naive Bayes methods were tested in order to identify the most promising 
approach. 
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The classifiers were trained on parametric data which included both automated event bulletins (SEL3) and the 
corresponding analyst-reviewed bulletins, late event bulletins (LEB). Each bulletin includes data for both events and 
arrivals, as well as associated information. The parametric data used to train the classifiers consists of a long list of 
attributes related to the arrivals and associations. This list is detailed in Table 1.  

Table 1. List of attributes used to form the feature vector to characterize SEL3 events. 

Origin table fields: lat, lon, depth, time, nass, ndef, ndp, grn, srn (vectorized), dtype (vectorized), mb, ms, ml 
Origerr table fields: sxx, syy, szz, stt, sxy, sxz, syz, stx, sty, stz, sdobs, 
smajax, sminax, strike, sdepth, stime  
Number of associated arrivals at each station 
Haversine distance from origin location to each station 
Counts of associated Assoc.delta values in six-degree bins 
Counts of associated Arrival.qual values 
Counts of associated Assoc.phase values 
Counts of associated Arrival.iphase values 
Number of times Assoc.phase != Arrival.iphase for associated arrivals 
Number of time defining associated arrivals 
Fraction of time defining associated arrivals 
Number of azimuth defining associated arrivals 
Fraction of azimuth defining associated arrivals 
Number of slowness defining associated arrivals 
Fraction of slowness defining associated arrivals 
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Figure 1. Simplified context diagram situating the various projects undertaken in the Machine Learning area
and applied to the processing of seismic and hydroacoustic data at the IDC. 
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Mean of absolute value of associated Assoc.timeres values 
Mean of absolute value of associated Assoc.azres values 
 Mean of absolute value of associated Assoc.slores values 
Mean of associated Arrival.snr values 
Variance of associated Arrival.snr values 
Mean of associated Arrival.deltim value 
Variance of associated Arrival.deltim values 
Mean of associated Arrival.delaz value 
Variance of associated Arrival.delaz values 
Mean of associated Arrival.delslo value 
Variance of associated Arrival.delslo values  
 

The three-month dataset used in the study consisted of IDC parametric data for mid-March to mid-June 2009. It 
included 13,254 SEL3 events with 150,275 associated arrivals. The LEB bulletin for that time period included 9,961 
events with 169,981 associated arrivals. Of these LEB arrivals, 114,464 were automatically generated (i.e., retained 
by analysts from SEL3) and 55,517 were added by analysts. 
 
A set of SEL3 events for use by the classification procedures is obtained by featuring numeric values that 
informatively summarize the parametric data describing each SEL3 event, including residuals, error ellipses, number 
of defining phases, signal-to-noise ratios, and other quantities (see Table 1 for the list of features). The set of such 
values for a given SEL3 event forms a real vector, with which a binary label is associated indicating whether or not 
that event was subsequently discarded by analysts. For evaluation, a data set is built that excludes parametric data 
based on non-seismic stations. The first 75% of SEL3 events are used for training, and the final 25% of SEL3 events 
are used as a test set. To evaluate a given classification procedure, it is first trained to learn a classifier. 
Subsequently, the classifier is evaluated to determine which previously unseen events will be discarded by analysts 
by applying it to the test set. 

The primary metric used to assess the 
performance of the classification 
procedures is accuracy: the fraction of 
events in the test set that are correctly 
classified. The receiver operating 
characteristic (ROC) curves measure 
the tradeoff between false positive and 
false negative rates. Figure 2 
summarizes the performance metrics 
for the different classifiers tested 
along with the SEL3 bulletin 
performance. The accuracy of the 
SEL3 bulletin under this measure is 
65.41%. The classification procedures 
yield significant improvements. 
Among them, the linear L2 SVM 
yields the best performance with 
81.47% accuracy. Other methods 
considered, such as boosted decision 
stumps and the non-linear L2 SVM, 

achieve similar performance, though the 
linear SVM enjoys the additional 

advantages of efficiency and interpretability. It is also worth noting that the simpler Naive Bayes procedure provides 
some improvement over SEL3 but significantly underperforms its more sophisticated counterparts. 
 

 

 

Figure 2. ROC for the different false events classifiers tested in this study
(after Kleiner et al., 2009).    
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Seismic Phase Identification 

The sec ond sh ort-term proje ct prese nted h ere i s t he i dentification of se ismic phases o n t hree-component sei smic 
stations using features extracted from the waveform. This project aims at assessing potential improvements in the 
current operational system at  t he l evel o f s tation processing, as  sh own on Fi gure 1 (Phase_ID l abel). A data set 
consisting of 117,181 detections at 3-component stations during 2009 was compiled from a number of IDC tables. 
The attributes used to perform the classification and their definitions are shown in Table 2. The ground truth phase 
for t hese detections i s t aken from t he an alyst-reviewed associ ation t able. For t his st udy, only 8 phases were 
considered (Lg, P, PKP, Pg, Pn, Rg, S, Sn). In most cases, P and PKP are grouped together and the problem treated 
is a 7-class problem. On e of th e d ifficulties with th is problem is th at th e P and  PKP phases overwhelmingly 
dominate the statistics in terms of their numbers (75.7% of the records) and that other phases—Rg in particular—are 
very rare.    
 
ddet60 Number of detections in a 60s window before and after 

the current detection  
dtime60 Average time between detections in a 60s window 

before and after the current detection 
Hmxmn Maximum to minimum horizontal ratio 
htov0.25 Horizontal to vertical ratio at 0.25 Hz 
htov0.5 H orizontal to vertical ratio at 0.5 Hz 
htov1 H orizontal to vertical ratio at 1.0 Hz 
htov2 H orizontal to vertical ratio at 2.0 Hz 
htov4 H orizontal to vertical ratio at 4.0 Hz 
Hvrat S-phase horizontal to vertical ratio 
Hvratp P-phase horizontal to vertical ratio 
inang1 Long-axis incidence angle 
inang3 Short-axis incidence angle 
Per Dom inant period 
Plans S-phase  planarity 
Rect Rectilin earity 
Slow Sl owness 
 

Several classifiers were assessed against the analyst ground-truth and they are included in the following list: 
 
Support Vector Machines – SVM algorithms identify a linear decision boundary in the feature space between two 
classes. Among all possible linear decision boundaries, they choose the one that maximizes the margin between the 
two classes. The solution allows for a number of points to lie on the wrong side of the boundary and assesses a 
penalty on them. In order to create a non-linear decision boundary in the original space, a kernel is used to generate 
additional features from the original ones. The 7-class problem is handled by building 7 binary classifiers that 
separate each class from all the others. For each new sample, all 7 classifiers are queried and the class corresponding 
to the one giving the highest prediction is chosen. See Cristianini et al. (2000) for more details on SVMs.  The 
implementation used for this test was the LIBLINEAR library available at 
http://www.csie.ntu.edu.tw/~cjlin/liblinear/ 
 
Decision Trees – These are trees where the root and the other internal nodes contain a test of one of the features, 
which specifies whether a data point belongs to the left or right sub-tree of that node. The training data points are 
stored at the leaves of the trees. In order to classify a new test sample, the tests are used to find the correct leaf for 
the sample and the majority class of the training samples in that leaf is predicted. Learning of the decision trees is 
done by a greedy information-gain based procedure. See Hastie et al. (2000) for more details on decision trees. 
 

Table 2. Attributes used in the classification of different seismic phases detected on three-component stations.    
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Bagging – Baggi ng takes multiple b ootstrap samples of the training data and learns a separate m odel from each 
bootstrap sample.  The final prediction is made by averaging or voting the  predictions of each model. Bagging may 
be applied to any classifier, but is commonly used in conjunction with decision trees to handle problems with over-
fitting, which is what we did in this study. 
 
Boosting – Boo sting is co nceptually similar to  bagging except that each new model is co nstructed by reweighting 
the training data points according to how much prediction error they have in the current set of models. We tested a 
version called AdaBoost.  

The methods were tested using the first 60% (in time) of the data for training and the last 40% for testing.  There 
were two modes of modeling.  The "single-task" mode lumps all the data together and learns a single model to be 
used at all stations. The "multi-task" mode learns a station-specific model using only the data for that station.  A 
summary of the accuracy in predicting the phases for the test set is shown in Table 3.  

Table 3. Accuracy results of testing six different classifying methods. The first column (single-task) shows the results of 
classifying independently of the station. The second column (multi-task) shows the results of classifying using 
station-specific classifiers.   

Method One predictor for all stations  One predictor per station 
Multi-class SVM 76.09 82.32 

Multi-class SVM with normalization 77.53 83.47 
Real AdaBoost, 1vsAll 80.22 83.17 

Gental AdaBoost, 1vsAll 80.31 83.42 
Bagged decision trees 79.66 84.05 

Bagged decision trees with kernels 79.82 84.18 
 

The best performing models were those using bagged decision trees (shown in bold in Table 3). The kernel used to 
produce the best result was one that generates all quadratic features (i.e., the product of all pairs of features). Based 
on this empirical study, a supervised classification method using bagged decision trees with additional features 
generated by a quadratic kernel yields the best results. The best performance is obtained by training a separate 
classifier for each station. 
 
Vertically Integrated Seismic Association 

The goal of this project is to investigate if improvements can be made to the existing IDC seismic processing system 
using modern methods based on Bayesian inference. In a first stage, as indicated in Figure 1, the method is applied 
at the stage where parametric detection data is processed to obtain automatic bulletins. This initial project leads to 
the building of the NET-VISA prototype and the current results are presented here. A second stage, SIG-VISA, will 
include the detection and phase identification stage leading to the parametric data into the inference construct. 
 
The probabilistic model in NET-VISA is based on a generative forward model which consists of: 

 
 Spatial, temporal, and magnitude probabilistic 
models for event generation. The temporal model is a 
Poisson process. The spatial model is based on a prior 
spatial distribution of seismicity (shown in Figure 3) to 
which is added a uniform spatial distribution to take into 
account the possibility of an event occurring at a place 
where it never occurred before, as in the case of a newly 
developed nuclear test site. The magnitude model is based 
on the Gutenberg-Richter distribution. 
     

Figure 3. Prior distribution of events used in the event
distribution generative model.    
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 Detection generation model at a given station knowing the location and magnitude of the event. This 
includes the phase-dependent probability that the event be detected at the station and the phase-dependent 
probability that the detection be of a certain amplitude and at a certain time around the mean time of arrival 
from the specific phase. Figure 4 shows on the left the analytical curve used in the probability of detection 
calculations and how it calibrates well against the observations. The right side of the figure shows the 
overall distribution of arrival time residual for P phases. Note that it fits very closely the Laplace 
distribution used in the modeling. Slowness and azimuth residuals are also modeled using a Laplace 
distribution.    
 

 False detection. To take into account the fact that many false detections are made and may coincidentally 
be associated with an event, false detections are modeled into the generative forward model. The result is 
that the inference process takes into account the possibility of a false association. This is superior to the 
current operational model where any match between event and detection is assumed to be a positive match 
independently of the potential for the detection to be false. This leads to spurious association and 
degradation of location capability.   
 

Using this probabilistic generative model, consisting of the product of all aforementioned probabilities, an inference 
engine is used to build event hypotheses consistent with the parametric observations. The general manner in which 
event set hypotheses are improved is that the current state is updated using a limited set of moves. The different 
moves used within the inference engine are listed below and give an intuitive view of the various steps leading to 
incremental improvements in the set of event hypotheses. 
 

1. Birth Move: The birth move is executed only once in each event window. To propose the birth move 
events are searched on a fixed grid of points. The grid consists in 1-degree longitude and latitude buckets, 
100-km depth buckets, 5-second time buckets within the event window, and 0.5-magnitude steps. At each 
of these grid points an event is hypothesized and the best detections added to it. At each station, the best 
detection with a score > 1 is added. Finally, the score of all the possible events is computed and the event 
with the greatest score > 1 is picked. If an event is found, then it is added to a list and all of its associated 
detections are marked unavailable. The algorithm is repeated over the same grid of events but with fewer 
associated detections. Finally, when no more events are found, the list of events is added to the hypothesis. 
The events are added to the hypothesis without any associated detections. Therefore this move is 
technically a downhill move. However, it is followed by other moves which will either add detections and 
make these events viable or kill them. 

 

Figure 4. The curve to the left is the probability of detection of a P phase at station ASAR as a function of 
distance for an event of magnitude between 3 and 4. The analytical curve (in black) used in the 
calculations is shown superimposed on the observations (in red). The histogram to the right shows 
the overall (over all stations) travel time residuals distribution. Note the good fit to a Laplace 
distribution.    

2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

776



  

2. Improve Detections Move: For each detection in the detection window, all possible events up to the time 
of the detection are considered as well as all possible phases for these events to find the best event-phase 
for it. If the best event-phase has a score < 1 or the best event-phase already has another detection with a 
higher score then this detection is changed to a false detection. 
 

3. Death Move: Any event with a score < 1 is killed and all its detections are marked as noise. 
 

4. Improve Events Move: For each event we look for 1000 points chosen uniformly at random in a small ball 
around the event (5 degrees in longitude and latitude, 200 km in depth, 50 seconds in time, and 1 units of 
magnitude) for an event with a higher score. If such an event is found, the event parameters are changed. 
 

5. Final Pruning: Before outputting events a final round of pruning to remove some duplicate events is 
performed. Any event which has another event with a higher score and within 5 degree distance and 50 
second time is pruned. The reason for these spurious events is that true events have a long waveform coda 
within which detections are made at each site. These detections don’t correspond to any event-phase of the 
original event but taken together they do suggest a new event at about the same location and time as the 
original event. Our model does allow for false detections but not false detections which are associated with 
a true event. Thus we need to explicitly prune these events for now. A later, more realistic model might be 
envisioned where the most probable detections within the coda are modeled.  

 

 

 

The current results of the prototype are very promising when compared to the IDC operational results (see Figure 5). 
NET-VISA has a 14% higher recall (obtained events) at a slightly higher precision (automatic event that match an 
LEB event) than global association (GA), the current network processing program, and a 24% higher precision rate 
at the same recall rate as GA. A full assessment of the prototype cannot be achieved without analyst review of its 
results. There is tantalizing suggestion that this may prove very interesting since some of the events formed by  
NET-VISA (and missed by LEB) have been confirmed by bulletins (National Earthquake Information Center) 
independent of the IDC bulletin. It should be noted that an LEB bulletin based on the results of NET-VISA has the 
potential to be quite different especially at magnitudes between 3 and 4, and perhaps more accurate than the 
currently produced LEB which takes as starting point for analysis the SEL3 produced by GA.  

 

 

Figure 5. Receiver Operating Characteristics (ROC) for NET-
VISA (in blue) and the location on the SEL3 bulletin
in the precision/recall space.    
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CONCLUSIONS AND RECOMMENDATIONS 

The few projects initiated in the Machine Learning area at the IDC of the CTBTO have proven that bringing 
innovative components to the current operating system should strengthen it and increase the precision of the 
automatic results which in turn should greatly increase the productivity of analysis and allow more precise bulletins 
to be produced. Some of the methods can be applied to some extent as a tuning exercise of the existing system, since 
it was found that some projects presented in this paper would benefit from station-dependent adjustment in 
parameterization of the algorithms. The NET-VISA project has shown the benefit of a radical overhaul of a key 
component of the system, and how new paradigms can be applied operationally with the increased computing power 
available to us over a decade after the development of the current IDC operational system.  

A crucial step before a complete proof-of-concept for these projects can be presented to the member states of the 
CTBTO is to involve seasoned analysts in the evaluation of these new algorithms.      

Another conclusion of these positive results of the current machine learning efforts is that more problems of interest 
to the CTBTO could be tackled such as infrasound phase identification, event screening, and on-site-inspection data 
sifting.  
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